Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (4*E*)-1,5-Dimethyl-4-[(5-nitrofuran-2-yl)methyleneamino]-2-phenyl-1*H*-pyrazol-3(2*H*)-one

#### Zuo-Liang Jing,\* Ming Yu and Chen Shen

College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China Correspondence e-mail: jzl74@tust.edu.cn

Received 4 July 2007; accepted 14 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.154; data-to-parameter ratio = 12.4.

In the title compound,  $C_{16}H_{14}N_4O_4$ , the central  $C_3N_2$  ring is planar, with an r.m.s. deviation of 0.0253 (2) Å for the five fitted atoms, and forms dihedral angles of 5.66 (6) and 46.54 (5)°, respectively, with the (5-nitrofuran-2-yl)methylene and phenyl groups. The molecules adopt a layered arrangement, with the nitro groups accepting  $C-H\cdots O$  interactions.

#### **Related literature**

For related literature, see: Kahwa et al. (1986); Santos et al. (2001).



#### **Experimental**

Crystal data  $C_{16}H_{14}N_4O_4$  $M_r = 326.31$ 

Monoclinic,  $P2_1/n$ a = 7.0722 (14) Å b = 7.8143 (16) Å c = 27.917 (6) Å  $\beta = 91.75 (3)^{\circ}$   $V = 1542.1 (6) \text{ Å}^{3}$ Z = 4

Data collection

| Rigaku Saturn CCD diffractometer       | 9081 measured reflections              |
|----------------------------------------|----------------------------------------|
| Absorption correction: multi-scan      | 2723 independent reflections           |
| (CrystalClear; Rigaku/MSC,             | 2175 reflections with $I > 2\sigma(I)$ |
| 2005)                                  | $R_{\rm int} = 0.047$                  |
| $T_{\min} = 0.990, \ T_{\max} = 0.996$ |                                        |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ 219 parameters $wR(F^2) = 0.154$ H-atom parameters constrainedS = 1.17 $\Delta \rho_{max} = 0.25$  e Å $^{-3}$ 2723 reflections $\Delta \rho_{min} = -0.32$  e Å $^{-3}$ 

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$   | D-H       | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|--------------------|-----------|-------------------------|-------------------------|-----------------------------|
| $C3-H3\cdots O1^i$ | 0.93      | 2.49                    | 3.407 (3)               | 170                         |
| Symmetry code: (i) | r v - 1 z |                         |                         |                             |

Symmetry code: (i) x, y - 1, z.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *CrystalStructure* (Rigaku/MSC, 2005); software used to prepare material for publication: *CrystalStructure*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2210).

#### References

- Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.

Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Mo  $K\alpha$  radiation  $\mu = 0.10 \text{ mm}^{-1}$ 

 $0.10 \times 0.08 \times 0.04$  mm

T = 293 (2) K

supplementary materials

Acta Cryst. (2007). E63, o3541 [doi:10.1107/S1600536807034502]

## (4E)-1,5-Dimethyl-4-[(5-nitrofuran-2-yl)methyleneamino]-2-phenyl-1H-pyrazol-3(2H)-one

## Z.-L. Jing, M. Yu and C. Shen

#### Comment

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa *et al.*, 1986; Santos *et al.*,2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands, we report the synthesis and structure of the title compound.

The molecular structure (Figure 1) has expected geometric parameters. The central chromophore (C6–C8/N3/N4) is planar, with an r.m.s. deviation for the fitted atoms of 0.0253 (2) Å. The 5-nitrofuran-2-carbaldehyde group (C1–C4/O3) and phenyl ring (C11–C16) are also planar, with r.m.s. deviations of 0.0013 (3) and 0.0084 (4) Å, respectively. The dihedral angles between these latter two planes and the plane through the C6–C8/N3/N4 ring are 5.66 (6)° and 46.54 (5)°, respectively, while the C1–C4/O3 and C11–C16 planes form an angle of 46.97 (4) Å. The molecules adopt a layered arrangement (Figure 2), with C—H…O interactions formed to the NO<sub>2</sub> group.

#### **Experimental**

An anhydrous ethanol solution (50 ml) of 5-nitrofuran-2-carbaldehyde (1.41 g,10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture was stirred at 350 K for 6 h under  $N_2$ , forming a red solution. The solvent was removed and the residue was recrystallized from anhydrous ethanol then dried *in vacuo* to give the title compound in 88% yield. Red single crystals suitable for X-ray analysis were obtained by slow evaporation of an anhydrous ethanol solution.

#### Refinement

H atoms were included in calculated positions, with C—H = 0.93 (aromatic) or 0.96 Å (methyl), and refined using a riding model, with  $U_{iso}(H) = 1.2U_{eq}(aromatic C)$  or  $1.5U_{eq}(methyl C)$ . The methyl groups were allowed to rotate about their local threefold axes.

#### Figures



Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.



Fig. 2. Packing view along the *c*-axis. Dashed lines denote C—H…O interactions.

## (4E)-1,5-Dimethyl-4-[(5-nitrofuran-2-yl)methyleneamino]-2-phenyl-1*H*-pyrazol- 3(2*H*)-one

| Crystal data                  |                                               |
|-------------------------------|-----------------------------------------------|
| $C_{16}H_{14}N_4O_4$          | $F_{000} = 680$                               |
| $M_r = 326.31$                | $D_{\rm x} = 1.406 {\rm ~Mg} {\rm ~m}^{-3}$   |
| Monoclinic, $P2_1/n$          | Mo K $\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn           | Cell parameters from 3365 reflections         |
| a = 7.0722 (14)  Å            | $\theta = 2.6 - 27.9^{\circ}$                 |
| b = 7.8143 (16)  Å            | $\mu = 0.10 \text{ mm}^{-1}$                  |
| c = 27.917 (6) Å              | T = 293 (2)  K                                |
| $\beta = 91.75 \ (3)^{\circ}$ | Block, red                                    |
| V = 1542.1 (6) Å <sup>3</sup> | $0.10\times0.08\times0.04~mm$                 |
| Z = 4                         |                                               |

#### Data collection

| 2723 independent reflections           |
|----------------------------------------|
| 2175 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.047$                  |
| $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\theta_{\min} = 1.5^{\circ}$          |
| $h = -8 \rightarrow 8$                 |
| $k = -9 \rightarrow 9$                 |
| $l = -33 \rightarrow 25$               |
|                                        |

## Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.055$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.154$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0739P)^2 + 0.2344P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.17                                                | $(\Delta/\sigma)_{\rm max} = 0.005$                                                 |
| 2723 reflections                                               | $\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$                                 |
| 219 parameters                                                 | $\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x          | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|------------|--------------|--------------|---------------------------|
| 01   | 0.6509 (3) | 0.9463 (2)   | 1.07595 (9)  | 0.0716 (7)                |
| O2   | 0.5483 (3) | 0.8358 (3)   | 1.14189 (8)  | 0.0708 (7)                |
| O3   | 0.7068 (2) | 0.64324 (18) | 1.03917 (6)  | 0.0381 (4)                |
| O4   | 0.8983 (3) | 0.4723 (2)   | 0.88083 (6)  | 0.0466 (5)                |
| N1   | 0.6087 (3) | 0.8236 (3)   | 1.10124 (9)  | 0.0507 (6)                |
| N2   | 0.7851 (3) | 0.2637 (2)   | 0.97211 (6)  | 0.0353 (5)                |
| N3   | 0.9515 (3) | 0.1961 (2)   | 0.85268 (7)  | 0.0373 (5)                |
| N4   | 0.9140 (3) | 0.0287 (2)   | 0.86905 (7)  | 0.0370 (5)                |
| C1   | 0.6319 (3) | 0.6556 (3)   | 1.08303 (8)  | 0.0374 (6)                |
| C2   | 0.5889 (4) | 0.5012 (3)   | 1.10137 (9)  | 0.0423 (6)                |
| H2   | 0.5368     | 0.4791       | 1.1309       | 0.051*                    |
| C3   | 0.6386 (4) | 0.3810 (3)   | 1.06675 (8)  | 0.0406 (6)                |
| H3   | 0.6253     | 0.2629       | 1.0688       | 0.049*                    |
| C4   | 0.7105 (3) | 0.4706 (3)   | 1.02929 (8)  | 0.0342 (5)                |
| C5   | 0.7813 (3) | 0.4231 (3)   | 0.98341 (8)  | 0.0350 (6)                |
| Н5   | 0.8235     | 0.5060       | 0.9624       | 0.042*                    |
| C6   | 0.8485 (3) | 0.2121 (3)   | 0.92785 (8)  | 0.0327 (5)                |
| C7   | 0.8621 (3) | 0.0419 (3)   | 0.91528 (8)  | 0.0345 (5)                |
| C8   | 0.8995 (3) | 0.3150 (3)   | 0.88740 (8)  | 0.0341 (5)                |
| С9   | 0.8329 (4) | -0.1113 (3)  | 0.94581 (10) | 0.0501 (7)                |
| H9A  | 0.7707     | -0.1991      | 0.9271       | 0.075*                    |
| H9B  | 0.7561     | -0.0810      | 0.9723       | 0.075*                    |
| H9C  | 0.9532     | -0.1528      | 0.9577       | 0.075*                    |
| C10  | 1.0214 (4) | -0.1151 (3)  | 0.84999 (10) | 0.0463 (6)                |
| H10A | 1.1541     | -0.0966      | 0.8562       | 0.069*                    |
| H10B | 0.9973     | -0.1237      | 0.8160       | 0.069*                    |
| H10C | 0.9833     | -0.2192      | 0.8652       | 0.069*                    |
| C11  | 0.9627 (3) | 0.2297 (3)   | 0.80267 (8)  | 0.0366 (6)                |
| C12  | 0.8539 (4) | 0.1400 (3)   | 0.76909 (9)  | 0.0450 (6)                |
| H12  | 0.7689     | 0.0572       | 0.7789       | 0.054*                    |
| C13  | 0.8724 (4) | 0.1746 (3)   | 0.72060 (9)  | 0.0524 (7)                |
| H13  | 0.8021     | 0.1126       | 0.6979       | 0.063*                    |
| C14  | 0.9938 (4) | 0.2999 (3)   | 0.70615 (10) | 0.0535 (7)                |
|      |            |              |              |                           |

# supplementary materials

| H14 | 1.0057     | 0.3226     | 0.6737       | 0.064*     |
|-----|------------|------------|--------------|------------|
| C15 | 1.0986 (4) | 0.3926 (3) | 0.73983 (10) | 0.0520 (7) |
| H15 | 1.1781     | 0.4797     | 0.7299       | 0.062*     |
| C16 | 1.0858 (4) | 0.3564 (3) | 0.78811 (9)  | 0.0453 (6) |
| H16 | 1.1591     | 0.4166     | 0.8106       | 0.054*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01  | 0.0948 (18) | 0.0325 (11) | 0.0871 (16) | -0.0013 (10) | -0.0040 (13) | -0.0034 (10) |
| 02  | 0.0737 (15) | 0.0753 (15) | 0.0635 (14) | 0.0122 (11)  | 0.0050 (12)  | -0.0309 (11) |
| 03  | 0.0455 (10) | 0.0303 (8)  | 0.0387 (9)  | -0.0018 (7)  | 0.0023 (7)   | 0.0004 (7)   |
| 04  | 0.0676 (13) | 0.0290 (9)  | 0.0437 (10) | -0.0025 (8)  | 0.0109 (9)   | 0.0037 (7)   |
| N1  | 0.0510 (14) | 0.0420 (13) | 0.0585 (15) | 0.0044 (10)  | -0.0068 (12) | -0.0146 (11) |
| N2  | 0.0389 (11) | 0.0359 (11) | 0.0311 (10) | -0.0004 (8)  | 0.0016 (8)   | 0.0018 (8)   |
| N3  | 0.0514 (12) | 0.0288 (10) | 0.0322 (10) | -0.0041 (9)  | 0.0088 (9)   | 0.0047 (8)   |
| N4  | 0.0469 (12) | 0.0254 (10) | 0.0391 (11) | -0.0016 (8)  | 0.0064 (9)   | 0.0022 (8)   |
| C1  | 0.0384 (13) | 0.0385 (13) | 0.0355 (13) | -0.0003 (10) | 0.0006 (10)  | -0.0060 (10) |
| C2  | 0.0474 (15) | 0.0443 (14) | 0.0355 (13) | -0.0001 (11) | 0.0053 (11)  | 0.0018 (10)  |
| C3  | 0.0508 (15) | 0.0318 (12) | 0.0393 (14) | 0.0000 (10)  | 0.0052 (11)  | 0.0049 (10)  |
| C4  | 0.0355 (13) | 0.0289 (11) | 0.0381 (13) | 0.0008 (9)   | -0.0019 (10) | -0.0010 (9)  |
| C5  | 0.0363 (14) | 0.0362 (13) | 0.0324 (12) | -0.0016 (10) | 0.0002 (10)  | 0.0041 (9)   |
| C6  | 0.0351 (13) | 0.0296 (12) | 0.0337 (12) | -0.0006 (9)  | 0.0032 (10)  | 0.0023 (9)   |
| C7  | 0.0363 (13) | 0.0335 (12) | 0.0337 (12) | -0.0011 (10) | 0.0013 (10)  | 0.0025 (9)   |
| C8  | 0.0382 (13) | 0.0292 (12) | 0.0351 (12) | -0.0024 (9)  | 0.0020 (10)  | 0.0007 (9)   |
| C9  | 0.0706 (19) | 0.0340 (13) | 0.0461 (15) | -0.0027 (12) | 0.0076 (13)  | 0.0088 (11)  |
| C10 | 0.0572 (17) | 0.0329 (13) | 0.0492 (15) | 0.0031 (11)  | 0.0075 (12)  | -0.0042 (11) |
| C11 | 0.0406 (14) | 0.0360 (12) | 0.0337 (12) | 0.0025 (10)  | 0.0091 (10)  | 0.0028 (9)   |
| C12 | 0.0497 (16) | 0.0396 (14) | 0.0457 (15) | -0.0061 (11) | 0.0042 (12)  | 0.0021 (11)  |
| C13 | 0.0683 (19) | 0.0502 (15) | 0.0385 (14) | 0.0023 (14)  | -0.0031 (13) | -0.0041 (12) |
| C14 | 0.073 (2)   | 0.0522 (16) | 0.0368 (14) | 0.0094 (14)  | 0.0157 (13)  | 0.0059 (12)  |
| C15 | 0.0587 (18) | 0.0511 (15) | 0.0473 (16) | -0.0062 (13) | 0.0207 (13)  | 0.0080 (12)  |
| C16 | 0.0486 (16) | 0.0461 (14) | 0.0415 (14) | -0.0078 (12) | 0.0072 (12)  | 0.0018 (11)  |

# Geometric parameters (Å, °)

| O1—N1  | 1.233 (3) | C6—C7    | 1.380 (3) |
|--------|-----------|----------|-----------|
| O2—N1  | 1.229 (3) | C6—C8    | 1.441 (3) |
| O3—C1  | 1.352 (3) | С7—С9    | 1.488 (3) |
| O3—C4  | 1.378 (3) | С9—Н9А   | 0.960     |
| O4—C8  | 1.242 (3) | С9—Н9В   | 0.960     |
| N1—C1  | 1.419 (3) | С9—Н9С   | 0.960     |
| N2—C5  | 1.285 (3) | C10—H10A | 0.960     |
| N2—C6  | 1.387 (3) | C10—H10B | 0.960     |
| N3—C8  | 1.400 (3) | C10—H10C | 0.960     |
| N3—N4  | 1.413 (2) | C11—C12  | 1.385 (3) |
| N3—C11 | 1.425 (3) | C11—C16  | 1.388 (3) |
| N4—C7  | 1.357 (3) | C12—C13  | 1.390 (4) |
| N4—C10 | 1.466 (3) | C12—H12  | 0.930     |
|        |           |          |           |

| C1—C2                   | 1.349 (3)            | C13—C14                                              | 1.371 (4)   |
|-------------------------|----------------------|------------------------------------------------------|-------------|
| C2—C3                   | 1.400 (4)            | С13—Н13                                              | 0.930       |
| С2—Н2                   | 0.930                | C14—C15                                              | 1.384 (4)   |
| C3—C4                   | 1.369 (3)            | C14—H14                                              | 0.930       |
| С3—Н3                   | 0.930                | C15—C16                                              | 1.383 (4)   |
| C4—C5                   | 1.438 (3)            | C15—H15                                              | 0.930       |
| С5—Н5                   | 0.930                | C16—H16                                              | 0.930       |
| C1—O3—C4                | 105.17 (17)          | O4—C8—C6                                             | 131.8 (2)   |
| O2—N1—O1                | 124.4 (2)            | N3—C8—C6                                             | 104.42 (19) |
| O2—N1—C1                | 116.8 (2)            | С7—С9—Н9А                                            | 109.5       |
| 01—N1—C1                | 118.8 (2)            | С7—С9—Н9В                                            | 109.5       |
| C5—N2—C6                | 120.64 (19)          | Н9А—С9—Н9В                                           | 109.5       |
| C8—N3—N4                | 109.55 (18)          | С7—С9—Н9С                                            | 109.5       |
| C8—N3—C11               | 125.39 (19)          | Н9А—С9—Н9С                                           | 109.5       |
| N4—N3—C11               | 120.27 (18)          | H9B—C9—H9C                                           | 109.5       |
| C7-N4-N3                | 107 26 (17)          | N4—C10—H10A                                          | 109.5       |
| C7 - N4 - C10           | 124 19 (19)          | N4—C10—H10B                                          | 109.5       |
| $N_3 N_4 C_{10}$        | 119 18 (19)          | H10A - C10 - H10B                                    | 109.5       |
| $C_{2}$ $C_{1}$ $C_{3}$ | 112.3 (2)            | N4_C10_H10C                                          | 109.5       |
| $C_2 = C_1 = 0.5$       | 112.3(2)<br>121.4(2) |                                                      | 109.5       |
| $C_2 = C_1 = N_1$       | 131.4(2)<br>116.2(2) | H10P C10 H10C                                        | 109.5       |
| $C_1 = C_2 = C_2$       | 110.5(2)             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5       |
| C1 = C2 = C3            | 103.9 (2)            | C12 - C11 - C10                                      | 120.2(2)    |
| C1 = C2 = H2            | 127.1                | C12 - C11 - N3                                       | 121.6 (2)   |
| C3—C2—H2                | 127.1                | C16C11N3                                             | 118.2 (2)   |
| C4—C3—C2                | 107.0 (2)            | C11—C12—C13                                          | 119.6 (2)   |
| C4—C3—H3                | 126.5                | СП—С12—Н12                                           | 120.2       |
| С2—С3—Н3                | 126.5                | С13—С12—Н12                                          | 120.2       |
| C3—C4—O3                | 109.8 (2)            | C14—C13—C12                                          | 120.3 (2)   |
| C3—C4—C5                | 134.1 (2)            | C14—C13—H13                                          | 119.9       |
| O3—C4—C5                | 116.1 (2)            | C12—C13—H13                                          | 119.9       |
| N2—C5—C4                | 118.6 (2)            | C13—C14—C15                                          | 120.1 (3)   |
| N2—C5—H5                | 120.7                | C13—C14—H14                                          | 120.0       |
| C4—C5—H5                | 120.7                | C15-C14-H14                                          | 120.0       |
| C7—C6—N2                | 122.2 (2)            | C16-C15-C14                                          | 120.4 (3)   |
| C7—C6—C8                | 108.5 (2)            | С16—С15—Н15                                          | 119.8       |
| N2—C6—C8                | 129.1 (2)            | C14—C15—H15                                          | 119.8       |
| N4—C7—C6                | 109.74 (19)          | C15-C16-C11                                          | 119.4 (2)   |
| N4—C7—C9                | 122.0 (2)            | С15—С16—Н16                                          | 120.3       |
| С6—С7—С9                | 128.2 (2)            | C11—C16—H16                                          | 120.3       |
| O4—C8—N3                | 123.7 (2)            |                                                      |             |
| C8—N3—N4—C7             | -7.3 (2)             | C10—N4—C7—C9                                         | -27.0 (3)   |
| C11—N3—N4—C7            | -164.1 (2)           | N2—C6—C7—N4                                          | 175.44 (19) |
| C8—N3—N4—C10            | -155.3 (2)           | C8—C6—C7—N4                                          | -1.4 (3)    |
| C11—N3—N4—C10           | 48.0 (3)             | N2—C6—C7—C9                                          | -6.5 (4)    |
| C4—O3—C1—C2             | 0.2 (3)              | C8—C6—C7—C9                                          | 176.7 (2)   |
| C4—O3—C1—N1             | -178.63 (19)         | N4—N3—C8—O4                                          | -172.3 (2)  |
| O2—N1—C1—C2             | 4.5 (4)              | C11—N3—C8—O4                                         | -17.0 (4)   |
| O1—N1—C1—C2             | -176.1 (3)           | N4—N3—C8—C6                                          | 6.2 (2)     |

# supplementary materials

| O2—N1—C1—O3  | -177.0 (2)   | C11—N3—C8—C6    | 161.5 (2)  |
|--------------|--------------|-----------------|------------|
| O1—N1—C1—O3  | 2.5 (3)      | C7—C6—C8—O4     | 175.4 (2)  |
| O3—C1—C2—C3  | -0.3 (3)     | N2-C6-C8-O4     | -1.2 (4)   |
| N1—C1—C2—C3  | 178.2 (2)    | C7—C6—C8—N3     | -3.0 (2)   |
| C1—C2—C3—C4  | 0.4 (3)      | N2-C6-C8-N3     | -179.6 (2) |
| C2—C3—C4—O3  | -0.3 (3)     | C8—N3—C11—C12   | -120.2 (3) |
| C2—C3—C4—C5  | -178.5 (2)   | N4—N3—C11—C12   | 32.7 (3)   |
| C1—O3—C4—C3  | 0.1 (2)      | C8—N3—C11—C16   | 59.5 (3)   |
| C1—O3—C4—C5  | 178.64 (19)  | N4—N3—C11—C16   | -147.6 (2) |
| C6—N2—C5—C4  | 178.65 (19)  | C16-C11-C12-C13 | 1.7 (4)    |
| C3—C4—C5—N2  | -0.8 (4)     | N3-C11-C12-C13  | -178.6 (2) |
| O3—C4—C5—N2  | -178.96 (19) | C11—C12—C13—C14 | -1.8 (4)   |
| C5—N2—C6—C7  | 177.2 (2)    | C12—C13—C14—C15 | 0.0 (4)    |
| C5—N2—C6—C8  | -6.6 (4)     | C13-C14-C15-C16 | 1.9 (4)    |
| N3—N4—C7—C6  | 5.3 (3)      | C14-C15-C16-C11 | -1.9 (4)   |
| C10—N4—C7—C6 | 151.2 (2)    | C12-C11-C16-C15 | 0.1 (4)    |
| N3—N4—C7—C9  | -172.9 (2)   | N3-C11-C16-C15  | -179.6 (2) |
|              |              |                 |            |

# Hydrogen-bond geometry (Å, °)

| D—H···A                                 | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|-----------------------------------------|-------------|-------|--------------|---------|
| C3—H3···O1 <sup>i</sup>                 | 0.93        | 2.49  | 3.407 (3)    | 170     |
| Symmetry codes: (i) $x$ , $y-1$ , $z$ . |             |       |              |         |





